
Generation of (at least) UVM Register Models
from IP-Xact Using Model Driven SW Techniques

Jacob Sander Andersen/SyoSil ApS/CTO
Jacob <AT> syosil <DOT> com

© Accellera Systems Initiative 1

Agenda

• Introduction and Problem Statement

– The problem and the solution

• Eclipse Modelling Framework (EMF)

– Solution instance ☺

• Demos

– Simple Concept Demo

– Multiple EMF Demos

• Conclusion

• Questions

© Accellera Systems Initiative 2

Introduction

• Give insight in how to solve a reoccurring problem in a sound and
document scalable way through the usage of abstraction

• Raise level of abstraction

• Code generation and model driven software development present for
long time in ASIC verification

• Sometimes without knowing it

• within the field of ASIC verification

© Accellera Systems Initiative 3

Problem Statement: What and Why

• Well-known problem: Data transformation

• Classic examples :

– Register model abstraction -> Generation of RTL, Test bench, documentation, etc.

– Test bench abstraction -> Generation of test benches

– Address map abstraction -> Generation of e.g. header files etc.

• Why:

– Obvious productivity increase

– In some cases low hanging fruit

© Accellera Systems Initiative 4

Problem Statement

• Typical implementation facts

– Shell/Python/Perl script

– Individual for each “Problem”

– Good:
• Productivity gain

– Bad:
• Very simple to start with

• Does not scale with growing complexity

• Lack of reuse

© Accellera Systems Initiative 5

Problem 02 Script

Problem 01 ScriptInput File Output file

Input File Output file
Datastructure

Access

Functions

Typical Change Requests

© Accellera Systems Initiative 6

Problem 02 Script

Problem 01 Script

Input File

Format A

Output file

Input File

Output file

Format X

Input File

Format B

Output file

Format Y

Transform XAccess

Functions
Transform Y

Datastructure

• Normal maintenance
– Requirement updates on existing input/output

formats etc.
– Bug fixing

• Addition of new input formats
• Addition of new output formats
• Addition of more complex transformations

– E.g. daisy chaining with other similar data
transformation scripts

• Consequently
– Code base increases and becomes unmanageable
– A need for more reusable

• Architecture
• Development platform

Typical Refinements

© Accellera Systems Initiative 7

ScriptInput File

Format A Output file

Format X

Input File

Format B
Output file

Format Y

API

Datastructure

In
p
u
t
R

e
a
d
e
r

B

O
u
tp

u
t
W

ri
te

r

X

In
p
u
t
R

e
a
d
e
r

A

O
u
tp

u
t
W

ri
te

r

Y

Transform X

Transform Y

• Refactoring the code base

– Typically reorganize through
architectural separation

– Ad-hoc or use a well-known concept

• Model/View separation

– Input reader(s)

– Output writer(s)

– Data structure with a well defined API

Input Reader/Output Writer

• Input reader
– Parse the input file

– Format contains abstract data

– Populate the data structure using the API

– Examples: XML readers, XLS readers, Generated parsers etc.

• Output writer
– Write output file

– Format contains target data

– Access the data structure using the API

– Typically implemented using whatever print method is available

© Accellera Systems Initiative 8

Input File

Format A

API

Datastructure

In
p

u
t
R

e
a

d
e

r

A

Output File

Format X

API

Datastructure

O
u

tp
u

t
W

ri
te

r

X

Data Structure and API

• Data structure guarded by access API

• Ensures that data structure can be modified/updated etc.
independently from the rest (architectural separation)

© Accellera Systems Initiative 9

API

Datastructure

get_root()
get_X() set_Y()

(More) Typical Refinements

© Accellera Systems Initiative 10

• Output Writer
– Switch to templates

• Easy handling of static boiler plate code

• Shall be able to access the API of the data
structure for dynamic structures

– Many template engines are available
• Perl/Python template toolkit

• MAKO

Template Mechanism Example
[comment encoding = UTF-8 /]

[module genEnvEnv('http://www.syosil.com/uvmgen/VE’)]

[import mtl::util /]

[template public generateEnvEnv(env : EnvironmentComponent)]

[file (envEnvDir() + envEnvFile(), false, 'UTF-8’)]

[headerComment()/]

[descriptionComment('Environment : name=' +env.name + ' mode=' + env.mode)/]

[userRegion('BEGIN’)/]

// Top level environment for [env.name/]

//--

class [envEnv()/] extends uvm_env;

//--

// Configuration class handle

[envConfig()/] cfg;

// Virtual sequencer

[envVirtualSequencer()/] virtual_sequencer;

…

© Accellera Systems Initiative 11

// Copyright disclaimer

// Environment : name=myenv mode=b2b

// ************** KEEP ->Start of user code BEGIN

// Add user code for DESCRIPTION here!

// ************** KEEP ->End of user code BEGIN

// Top level environment for myenv

//--

class myenv extends uvm_env;

//--

// Configuration class handle

myenvcfg cfg;

// Virtual sequencer

myenv_seqr virtual_sequencer;

…

Formalize This!

• All fine but we just got a new problem

– Still need to handwrite and maintain fundamental
• Input readers

• Output writes

• Data structure and API

– Lack of a cross “Problem” reuse model

• Is there a solution for this new problem then?

– Luckily the answer is yes (Happy again ☺)

© Accellera Systems Initiative 12

Formalize This!

• Model Driven Software Development a.k.a

– Model Centric Software Development

• Well-known Concept

– Has been around for more than 25 years

– A complete field of research for universities

– Well established conferences

– A lot of books, documentation etc. available

© Accellera Systems Initiative 13

Formalize This!

• As name states is focusing on a model

• What is a model in our context?

– Data structure since it
• Captures the intended content

• Provides content transformations via the API

• But are we not doing this already?

– Yes but changes to the fundamentals:
Model, API, Input readers and output writers
is done manually

© Accellera Systems Initiative 14

Formalize This!

• Typical model driven software framework provides

– Model abstraction through meta modelling

• Meta modelling provides

– Abstract description of the model

– Enables generation of the fundamentals:
• Model

• API

• Input Reader

• Output Writer

• How are meta models then described?

© Accellera Systems Initiative 15

MOF Abstraction Ladder

• MOF – Meta Object Facility

– Wikipedia: https://en.wikipedia.org/wiki/Meta-Object_Facility

– Maintained by: Object Management Group (OMG)

– Designed as a four-layered architecture

• Defines the M3 model

– Closedmetamodeling architecture;

– Conforms to itself

© Accellera Systems Initiative 16

M3 Meta Meta Model Layer

M2 Meta Model Layer

M1 Model Layer

M0 Data Layer

MOF Examples
Level Unified Modeling Language (UML) XML Scheme Definition (XSD) Domain Specific Language (DSL)

M3 MOF 2.0 MOF 2.0 MOF 2.0

M2 UML 2.0 Meta Model XSD Meta Model DSL Meta Model

M1 A UML model definition An XSD definition C language definition

M0 An instance of the UML model An XML file compliant to the XSD C source file

© Accellera Systems Initiative 17

Tool Support

• Another problem - Many different tools for
– Model specification in

• Unified Modeling Language (UML)

• XML Schema Definition (XSD)

• Domain Specific Language (DSL)

– Code generation from the specified models supporting
• Usage of templates

• Model to model transformation

• Solution – Does a single framework supporting model driven software
development exist?

© Accellera Systems Initiative 18

Eclipse Modelling Framework

• What is it?
– Modeling framework and code generation facility for building tools and other

applications based on a structured data model

– Maintained/Developed by Eclipse Foundation

– Fundamentally provides three things
• Ecore: Specification of models

• EMF.Edit: Enable viewing and command-based editing of the model

• EMF.Codegen: Tools and runtime support to generate a set of Java classes for the model

• Many Eclipse projects provides extensions to EMF
– Acceleo (Model to Text)

– Xtext (DSL support)

© Accellera Systems Initiative 19

ECore Meta Model

• Reference implementation of OMGs Essential MOF (EMOF) compliance
point

• Can be specified in several ways
– Drawn in Eclipse

– Generated from UML diagram

– Generated from XSD

– Generated from DSL (xText)

• Ecore is also its own metamodel
– Ecore is defined in terms of itself (as MOF – closed architecture)

– Allows expressing other models

© Accellera Systems Initiative 20

EMF in an ASIC context

• A new problem occurs with eclipse based solutions

– Traditionally involves a lot of GUI “clicking” with the mouse

– Leads sometimes to poor reproducibility
• Due to difficult documentation process

• Which especially ASIC verification engineers hate

– Difficult to release EMF based solutions as stand alone “apps”
• Makes it difficult to use for non-Eclipse users

• Might cause problems in bigger organizations

– Might be difficult for non software people
• They are dinosaurs but not extinct - yet ☺

© Accellera Systems Initiative 21

EMF in an ASIC context

• Example

– “VHDL Code Generation from IP-Xact using the Eclipse Modeling Framework
(EMF)” tutorial from DVCon US 2015

– Lots of: “Click this”, “Right click that” etc.

• Numerous guides/howto’s on EMF follows the same pattern

• So how do we get a more reproducible setup for EMF usage in an ASIC
context?

© Accellera Systems Initiative 22

SyoGen

• We spent some time analyzing the compile time and runtime
dependencies in EMF

• After thorough research: SyoGen was born

– Command line support

– Based on Maven archetypes

– Architectural separation through the concepts of components

– Release components for reuse mechanism

– Binary release mechanism

© Accellera Systems Initiative 23

SyoGen Component Concept

• We had:

© Accellera Systems Initiative 24

C
o

m
p

o
n

en
t

B
u

ild
e

rs

• Component builders specified using Maven archetypes

SyoGen Layered Approach
Model

Use

XSD Archetype

Add

.xsd File

Build and Publish

Component

Templates

Use

Acceleo Archetype

Develop

MTL Modules

Build and Publish

Component

Tool

Use

Tool Archetype

Develop

Tool Logic

Build and Publish

Component

Runner

Use

Runner Archetype
Fetch Tool Run Tool

© Accellera Systems Initiative 25

SyoGen Abstract Reuse Model

Component Source

Tool Source

Component Build System

Tool Build System

Component Builders

Tool Builders

Component Store

B

C

D

A

B C

Source Control Use Tool

1 2

3

4

Store Component

Store Tool

Dependencies

Dependencies

© Accellera Systems Initiative 26

SyoGen Implementation

Eclipse Project

for Component

Eclipse Project

for Tool

Build Component

with Maven/Tycho

Build Tool with

Maven/Tycho

Maven Archetypes

for Components

Maven Archetype

for Tool

Eclipse

p2 Repository

B

C

D

A

B C

Git Repos Use Tool

1

4

2

3

Store Component

Store Tool

Dependencies

Dependencies

© Accellera Systems Initiative 27

Demos

• Simple concept demo

– EMF basics: Inventory

• SyoGen XSD demo

– IP-XACT model generation from IP-XACT specification

• SyoGen model-2-model transformation demo

– UVM register model generation from UML specification

– QVT transformations

• SyoGen DSL demo

– UVM UVC and TB generation using UVMGen

© Accellera Systems Initiative 28

Each demo contains

• Demo prolog describing the demo

• The demo

Simple Concept Demo Prolog

• Simple demo to show how models in EMF are created without SyoGen

• We use an example model that consists of two classes, Inventory and
Product.

• An Inventory consists of:
– name - a string attribute

– products - a containment reference of zero or more Product objects

• A Product consists of:
– name - a string attribute

– description - a string attribute

– quantity - an integer attribute

© Accellera Systems Initiative 29

Simple Concept Demo Prolog

• Steps

– Create Ecore Modeling Project

– Define Inventory Model Classes
• EMF Class Diagram Editor

– Create Inventory Model Instance
• XMI file

– Template Example for producing output
• MTL with Acceleo

© Accellera Systems Initiative 30

SyoGen XSD Demo Prolog

• Utilize IP-XACT XSD to define IPXACT EMF Model

• Utilize SyoGen to setup basics

– Project setup using Maven archetypes for component builders

– Model Component: Generate model from XSD

© Accellera Systems Initiative 31

SyoGen M2M Transformation Demo Prolog

Input Model

(XSD Component)

Tool Logic

(Tool Component)

Templates

(Acceleo Component)

Output Model

(UML Component)

Model to Model

(Qvto Component)

© Accellera Systems Initiative 32

Output Object

Output ModelUML Class Diagram

Qvto EngineInput Object

Template EngineOutput Files

XML File

XSD Input Model

conforms to

generated

from

transform

object
send object

send object

generate

files

read file

conforms to conforms to

generated

from

Flow:

Components:

Model

(Xtext Component)

Tool Logic

(Tool Component)

Templates

(Acceleo Component)

SyoGen DSL Demo Prolog

© Accellera Systems Initiative 33

Flow:
Components:

DSL Object

Template EngineOutput Files

DSL File

Xtext Grammar DSL Model

send object

generate

files

read file

conforms to conforms to

generated

from

• Demo info

– Done on a bigger example

– Shows DSL input as model specification

– Shows how to generate UVM-SV/SC

– Shows binary release for simple deployment

SyoGen DSL Example

• Pragmatism when defining the abstraction

• Layered abstraction:
– LUVC: implementation of UVCs

– LB2B: implementation of back2back testbench

– LTB: implementation of a RTL testbench

• Common Domain Specific Language (DSL) for all three layers and their
relations
– Compact, easy to read format

– Verification Environment format (VE)

• Partly presented at DVCon Europe 2016

• Able to generate both UVM-SV and UVM-SC

© Accellera Systems Initiative 34

Generating UVM

• UVM code generation is straight forward due to the
EMF framework

© Accellera Systems Initiative 35

SyoGen Information

• Is currently only an internal tool

– UVMGen is used for VIP (UVC) development

• Current apps:

– UVMGen (SystemVerilog/SystemC)

– IPXact2UVM

• Can be tested as a pilot project

• Collaboration for extensions/improvements/new domains are welcome

• Under consideration if we should release apps (e.g. UVMGen) for public
usage

© Accellera Systems Initiative 36

Lessons Learned

• The good ☺

– Utilizing EMF for a non-EMF person is now possible as SyoGen Apps

– Easy to boot people e.g. on existing Apps

– Easy to update/change Meta model due to EMF

• The Bad

– Development of the SyoGen tool is still difficult – EMF experts still needed
• Some maintenance is needed as Eclipse versions change etc.

– Store/Retrieve Components from P2 repo should be somehow automated

© Accellera Systems Initiative 37

Conclusion

• Utilizing EMF provides a very flexible platform

– Easy base case => Fast prototyping

– Well established framework backed up by MOF standard
• Lots of howto’s, tutorials, books

– Able to exploit whatever feature Eclipse provides

• SyoGen

– Uniform usage model no matter model specification

– Command line support

– High degree of reusability

© Accellera Systems Initiative 38

Conclusion
• Extensions

– Have experimented with a language for dynamically specification of the “tool component”
– Invoke Native Java Code Transformations from the Command-line. From the command-line, use

model transformations defined in normal Java code. e.g.

syogen 'a=r("input.model") b=j("com.syosil.model.AToB", a) w("output.other", b)’

– Interactive Shell
$ syogen

SyoGen 1.0.0

>>> a=r("input.model")

Reading model: input.model

>>> b=j("com.syosil.model.AToB", a)

Running model transformation: com.syosil.model.AToB

>>> w("output.other", b)

Writing model to file: output.other

© Accellera Systems Initiative 39

References

• Eclipse Foundation http://www.eclipse.org

• EMF https://www.eclipse.org/modeling/emf

• Eclipse projects provides extensions to EMF

– Acceleo (Model to Text)
https://projects.eclipse.org/projects/modeling.m2t.acceleo

– Xtext (DSL support) https://projects.eclipse.org/projects/modeling.tmf.xtext

• MOF – Meta Object Facility http://www.omg.org/mof/

– Wikipedia: https://en.wikipedia.org/wiki/Meta-Object_Facility

– Maintained by: Object Management Group (OMG http://www.omg.org)

© Accellera Systems Initiative 40

http://www.eclipse.org/
https://www.eclipse.org/modeling/emf
https://projects.eclipse.org/projects/modeling.m2t.acceleo
https://projects.eclipse.org/projects/modeling.tmf.xtext
http://www.omg.org/mof/
https://en.wikipedia.org/wiki/Meta-Object_Facility
http://www.omg.org/

Questions

© Accellera Systems Initiative 41

